Efficient Bayesian Methods for Posterior Sampling and Evidence Estimation

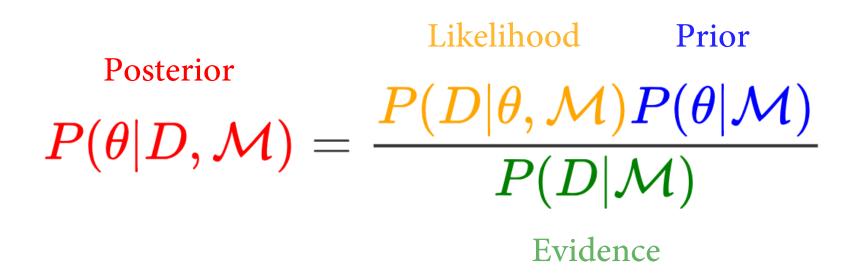
He Jia Peking University

, c

NAOC Workshop, Beijing | Dec 29, 2019

Bayes' Theorem

 \triangleright Given model \mathcal{M} , model parameters θ and data D,



How to get information from the posterior?

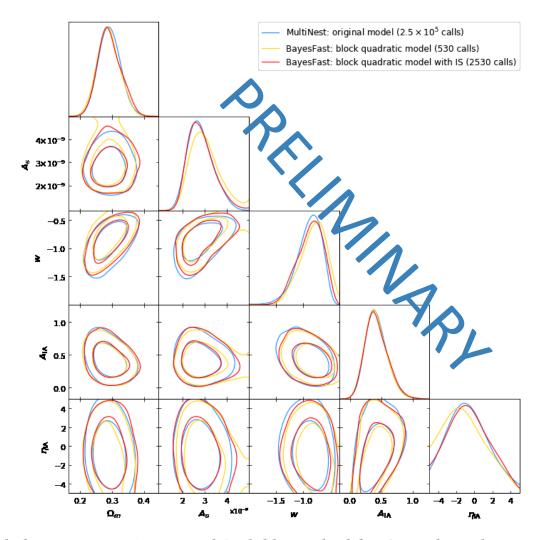
- \triangleright Say we want to know $\langle f(\theta) \rangle_p$ given the posterior $p(\theta)$
- \triangleright Naïve integration: $\mathcal{O}(e^D)$
- \triangleright In practice, we need to first get samples from $p(\theta)$
- \triangleright MCMC: typically 10⁵ evaluations for 10-d, 10⁶ for 20-d

Proposed Method

- \triangleright Usually, we can write the likelihood as $\mathcal{L}(m(\theta))$
- \triangleright Only $m(\theta)$ is expensive, so we approximate it with appropriate surrogate functions
- We found quadratic / cubic polynomials sufficient for most cosmological examples
- > We can add importance weights $p(\theta)/q(\theta)$ to retrieve asymptotic consistency

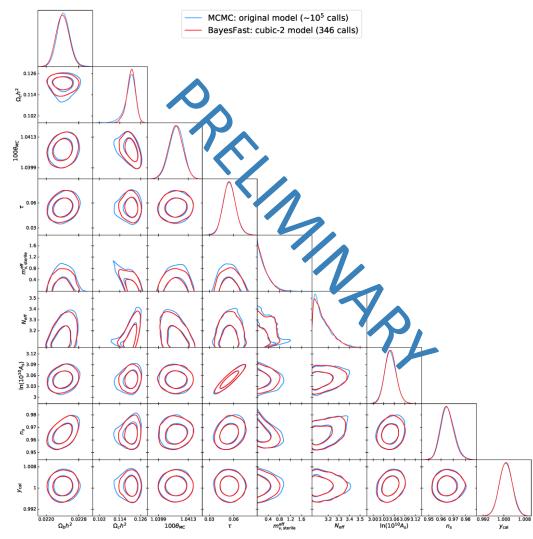
He Jia and Uros Seljak, BayesFast: A Fast and Scalable Method for Cosmological Bayesian Inference, in prep.

Results: DES Year 1



He Jia and Uros Seljak, BayesFast: A Fast and Scalable Method for Cosmological Bayesian Inference, in prep. 5

Results: Planck 2018



He Jia and Uros Seljak, BayesFast: A Fast and Scalable Method for Cosmological Bayesian Inference, in prep. 6

Bayesian Evidence

\triangleright Definition:

$$p(d|\mathcal{M}) \equiv \int_{\Omega_{\mathcal{M}}} p(d|\theta, \mathcal{M}) p(\theta|\mathcal{M}) d\theta$$
 (Bayesian evidence).

Empirical rule for model selection:

$ \ln B_{01} $	Odds	Probability	Strength of evidence
< 1.0	$\lesssim 3:1$	< 0.750	Inconclusive
1.0	$\sim 3:1$	0.750	Weak evidence
2.5	$\sim 12:1$	0.923	Moderate evidence
5.0	$\sim 150:1$	0.993	Strong evidence

Proposed Method

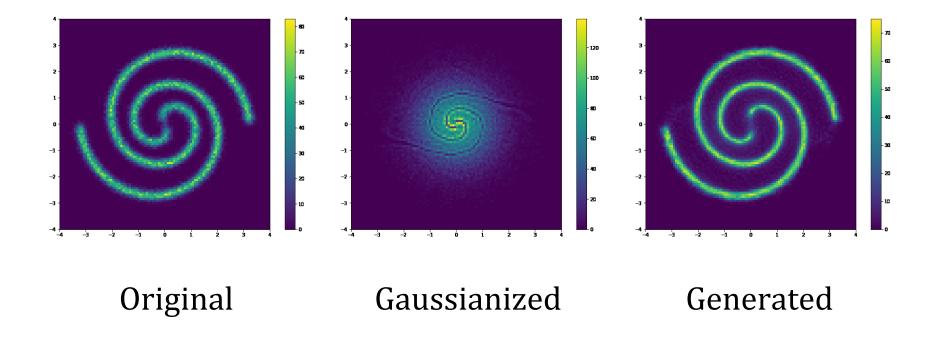
▷ Bridge Sampling:

$$\int_{\Omega} \alpha(\boldsymbol{x}) p(\boldsymbol{x}) q(\boldsymbol{x}) d\boldsymbol{x} = \mathcal{Z}_p \left\langle \alpha(\boldsymbol{x}) q(\boldsymbol{x}) \right\rangle_p = \mathcal{Z}_q \left\langle \alpha(\boldsymbol{x}) p(\boldsymbol{x}) \right\rangle_q,$$

Choice of $\alpha(x)$: optimal bridge function can be constructed Choice of q(x): approximated from the posterior samples

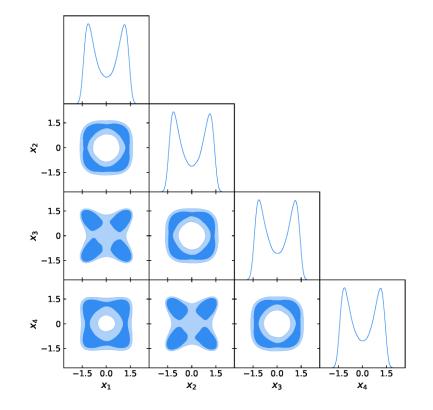
Proposed Method

▷ Iterative Neural Transform (INT):



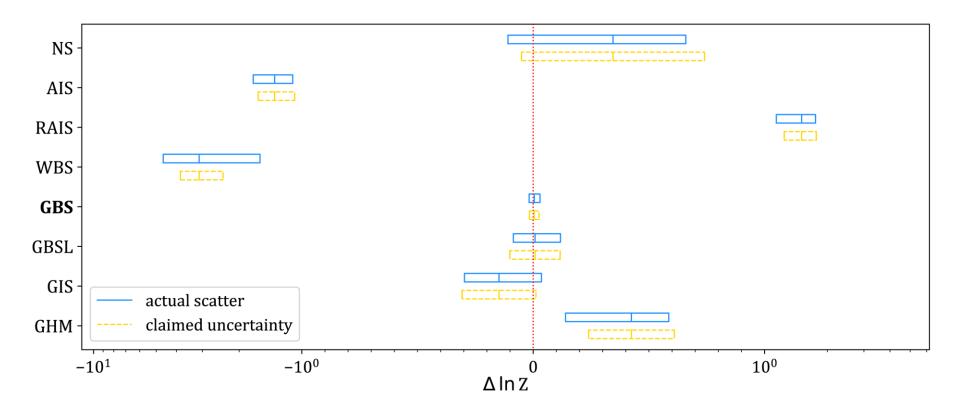
The details will be presented in another paper.

Ring Example: Corner Plot



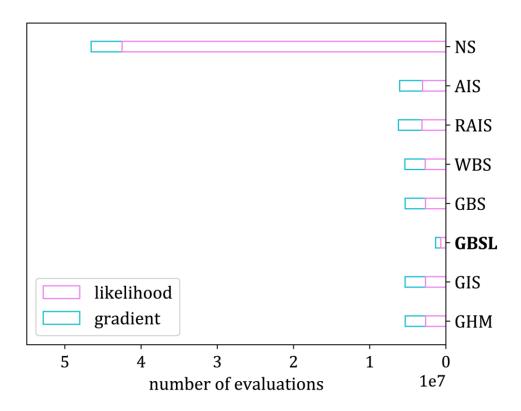
The example is in 64 dim. Here we only show the first 4 dim.

Ring Example: Accuracy



Abbreviation keys: NS, Nested Sampling; AIS, Annealed Importance Sampling; RAIS, Reversed Annealed Importance Sampling; WBS, Warp Bridge Sampling; GBS, Gaussianized Bridge Sampling; GBSL, Gaussianized Bridge Sampling Lite; GIS, Gaussianized Importance Sampling; GHM, Gaussianized Harmonic Mean.

Ring Example: Computation Cost



Abbreviation keys: NS, Nested Sampling; AIS, Annealed Importance Sampling; RAIS, Reversed Annealed Importance Sampling; WBS, Warp Bridge Sampling; GBS, Gaussianized Bridge Sampling; GBSL, Gaussianized Bridge Sampling Lite; GIS, Gaussianized Importance Sampling; GHM, Gaussianized Harmonic Mean.

Software Development

▷ BayesFast:

- https://github.com/HerculesJack/bayesfast
- Fast posterior sampling with polynomial surrogate models and No-U-Turn Sampler.
- \bigcirc Fast evidence evaluation with GBS algorithm.

CosmoFast:

- O https://github.com/HerculesJack/cosmofast
- Cosmology add-on for BayesFast.

Thanks! Any questions?